Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int Immunopharmacol ; 132: 111937, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38569427

RESUMEN

Tuberculosis (TB) treatment requires a long therapeutic duration and induces adverse effects such as hepatotoxicity, causing discontinuation of treatment. Reduced adherence to TB medications elevates the risk of recurrence and the development of drug resistance. Additionally, severe cavitary TB with a high burden of Mycobacterium tuberculosis (Mtb) and inflammation-mediated tissue damage may need an extended treatment duration, resulting in a higher tendency of drug-induced toxicity. We previously reported that the administration of Lactobacillus sakei CVL-001 (L. sakei CVL-001) regulates inflammation and improves mucosal barrier function in a murine colitis model. Since accumulating evidence has reported the functional roles of probiotics in drug-induced liver injury and pulmonary inflammation, we employed a parabiotic form of the L. sakei CVL-001 to investigate whether this supplement may provide beneficial effects on the reduction in drug-induced liver damage and pulmonary inflammation during chemotherapy. Intriguingly, L. sakei CVL-001 administration slightly reduced Mtb burden without affecting lung inflammation and weight loss in both Mtb-resistant and -susceptible mice. Moreover, L. sakei CVL-001 decreased T cell-mediated inflammatory responses and increased regulatory T cells along with an elevated antigen-specific IL-10 production, suggesting that this parabiotic may restrain excessive inflammation during antibiotic treatment. Furthermore, the parabiotic intervention significantly reduced levels of alanine aminotransferase, an indicator of hepatotoxicity, and cell death in liver tissues. Collectively, our data suggest that L. sakei CVL-001 administration has the potential to be an adjunctive therapy by reducing pulmonary inflammation and liver damage during anti-TB drug treatment and may benefit adherence to TB medication in lengthy treatment.


Asunto(s)
Latilactobacillus sakei , Mycobacterium tuberculosis , Probióticos , Animales , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Ratones , Neumonía/tratamiento farmacológico , Neumonía/inmunología , Antituberculosos/uso terapéutico , Antituberculosos/efectos adversos , Femenino , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Ratones Endogámicos C57BL , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/microbiología , Interleucina-10/metabolismo , Ratones Endogámicos BALB C , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/inmunología
2.
Nutrients ; 15(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38068826

RESUMEN

Osteoporosis, which is often associated with increased osteoclast activity due to menopause or aging, was the main focus of this study. We investigated the inhibitory effects of water extract of desalted Salicornia europaea L. (WSE) on osteoclast differentiation and bone loss in ovariectomized mice. Our findings revealed that WSE effectively inhibited RANKL-induced osteoclast differentiation, as demonstrated by TRAP staining, and also suppressed bone resorption and F-actin ring formation in a dose-dependent manner. The expression levels of genes related to osteoclast differentiation, including NFATc1, ACP5, Ctsk, and DCSTAMP, were downregulated by WSE. Oral administration of WSE improved bone density and structural parameters in ovariectomized mice. Dicaffeoylquinic acids (DCQAs) and saponins were detected in WSE, with 3,4-DCQA, 3,5-DCQA, and 4,5-DCQA being isolated and identified. All tested DCQAs, including the aforementioned types, inhibited osteoclast differentiation, bone resorption, and the expression of osteoclast-related genes. Furthermore, WSE and DCQAs reduced ROS production mediated by RANKL. These results indicate the potential of WSE and its components, DCQAs, as preventive or therapeutic agents against osteoporosis and related conditions.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Osteoporosis , Femenino , Animales , Ratones , Osteoclastos , Resorción Ósea/tratamiento farmacológico , Enfermedades Óseas Metabólicas/metabolismo , Osteoporosis/tratamiento farmacológico , Ligando RANK/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Diferenciación Celular , Osteogénesis
3.
Microorganisms ; 11(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37317332

RESUMEN

Inflammatory bowel disease (IBD) is an intestinal chronic inflammatory disease, and its incidence is steadily increasing. IBD is closely related to the intestinal microbiota, and probiotics are known to be a potential therapeutic agent for IBD. In our study, we evaluated the protective effect of Lactobacillus sakei CVL-001, isolated from Baechu kimchi, on dextran sulfated sodium (DSS)-induced colitis in mice. The oral administration of L. sakei CVL-001 according to the experimental schedule alleviated weight loss and disease activity in the mice with colitis. Furthermore, the length and histopathology of the colon improved. The expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1ß genes decreased in the colons of mice that were administered L. sakei CVL-001, whereas that of IL-10 increased. The expressions of genes coding for E-cadherin, claudin3, occludin, and mucin were also restored. In co-housed conditions, L. sakei CVL-001 administration did not improve disease activity, colon length, and histopathology. Microbiota analysis revealed that L. sakei CVL-001 administration increased the abundance of microbiota and altered Firmicutes/Bacteroidetes ratio, and decreased Proteobacteria. In conclusion, L. sakei CVL-001 administration protects mice from DSS-induced colitis by regulating immune response and intestinal integrity via gut microbiota modulation.

4.
Sci Rep ; 13(1): 8410, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225865

RESUMEN

Surveillance of influenza A viruses (IAVs) among migratory waterfowl is a first step in understanding the ecology, biology, and pathogenicity of IAVs. As part of the nationwide surveillance effort for IAVs in fowl in South Korea, we collected environmental fecal samples in different migratory bird stopover sites in South Korea during the winter seasons within November 2014 through January 2018. We collected a total of 6758 fecal samples, 75 of which were positive for IAV (1.11% positivity). Prevalence of IAVs varied per site and per year. Based on sequencing, the most prevalent hemagglutinin (HA) subtypes were H1, H6, and H5, and the most prevalent neuraminidase (NA) subtypes were N1, N3, and N2. Phylogenetic analyses showed that the genes we isolated clustered with reported isolates collected from other locations along the East Asian-Australasian Flyway. All the H5 and H7 isolates collected in this study were of low pathogenicity. None of the N1 and N2 genes carried amino acid markers of resistance against NA inhibitors. The winter 2016-2017 subset were primarily borne by migratory geese (Anser spp.). These results suggest that majority of the IAVs circulating among migratory wild fowl in South Korea in 2014-2018 were of low pathogenicity.


Asunto(s)
Anseriformes , Virus de la Influenza A , Gripe Aviar , Animales , Antivirales , Gansos/virología , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Filogenia , República de Corea/epidemiología , Gripe Aviar/diagnóstico , Gripe Aviar/epidemiología , Gripe Aviar/genética , Gripe Aviar/virología , Heces/virología , Anseriformes/virología , Monitoreo Biológico
5.
Front Nutr ; 9: 895837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799581

RESUMEN

Atopic dermatitis (AD) is one of the most prevalent, chronic and persistent inflammatory skin diseases closely associated with intestinal microbiota. To evaluate the effect of D-galactose intake on AD, we orally administered D-galactose to BALB/c mice whose ears and skin were treated with 2,4-dinitrochlorobenzene (DNCB). D-galactose alleviated DNCB-induced AD-like phenotypes such as redness, scaling/dryness and excoriation. Ear thickness was also decreased by D-galactose administration. Histopathological analysis revealed decreased epidermal thickening, infiltration of immune cells, especially mast cells, in the dermis. Total levels of serum IgE representing the immunological response of AD were decreased by D-galactose administration. Microbiota analysis showed that D-galactose administration restored gut microbiota profiles, which were altered in AD mice, characterized by increased abundance of Bacteroidetes and decreased abundance of Firmicutes. The increased abundance of Bacteroides and the decreased abundance of Prevotella and Ruminococcus were reversed by D-galactose treatment, following improvement of AD. Our results suggest the possible use of D-galactose as a prebiotic to alleviate AD by altering gut microbiota.

6.
Phytomedicine ; 99: 153934, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35172258

RESUMEN

BACKGROUND: Previously, we found that the water extract of Artermisia scoparia Waldst. & Kit suppressed the cytokine production of lipopolysaccharide (LPS)-stimulated macrophages and alleviated carrageenan-induced acute inflammation in mice. Artemisia contains various sesquiterpene lactones and most of them exert immunomodulatory activity. PURPOSE: In the present study, we investigated the immunomodulatory effect of estafiatin (EST), a sesquiterpene lactone derived from A. scoparia, on LPS-induced inflammation in macrophages and mouse sepsis model. STUDY DESIGN AND METHODS: Murine bone marrow-derived macrophages (BMDMs) and THP-1 cells, a human monocytic leukemia cell line, were pretreated with different doses of EST for 2 h, followed by LPS treatment. The gene and protein expression of pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) were measured by quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis. The activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) was also evaluated at the level of phosphorylation. The effect of EST on inflammatory cytokine production, lung histopathology, and survival rate was assessed in an LPS-induced mice model of septic shock. The effect of EST on the production of cytokines in LPS-stimulated peritoneal macrophages was evaluated by in vitro and ex vivo experiments and protective effect of EST on cecal ligation and puncture (CLP) mice was also assessed. RESULTS: The LPS-induced expression of IL-6, TNF-α, and iNOS was suppressed at the mRNA and protein levels in BMDMs and THP-1 cells, respectively, by pretreatment with EST. The half-maximal inhibitory concentration (IC50) of EST on IL-6 and TNF-α production were determined as 3.2 µM and 3.1 µM in BMDMs, 3 µM and 3.4 µM in THP1 cells, respectively. In addition, pretreatment with EST significantly reduced the LPS-induced phosphorylation p65, p38, JNK, and ERK in both cell types. In the LPS-induced mice model of septic shock, serum levels of IL-6, TNF-α, IL-1ß, CXCL1, and CXCL2 were lower in EST-treated mice than in the control animals. Histopathology analysis revealed that EST treatment ameliorated LPS-induced lung damage. Moreover, while 1 of 7 control mice given lethal dose of LPS survived, 3 of 7 EST-treated (1.25 mg/kg) mice and 5 of 7 EST-treated (2.5 mg/kg) mice were survived. Pretreatment of EST dose-dependently suppressed the LPS-induced production of IL-6, TNF-α and CXCL1 in peritoneal macrophages. In CLP-induced mice sepsis model, while all 6 control mice was dead at 48 h, 1 of 6 EST-treated (1.25 mg/kg) mice and 3 of 6 EST-treated (2.5 mg/kg) mice survived for 96 h. CONCLUSION: These results demonstrated that EST exerts anti-inflammatory effects on LPS-stimulated macrophages and protects mice from sepsis. Our study suggests that EST could be developed as a new therapeutic agent for sepsis and various inflammatory diseases.

7.
Sci Rep ; 11(1): 23991, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907256

RESUMEN

Avian influenza viruses (AIVs) are carried by wild migratory waterfowl across migratory flyways. To determine the strains of circulating AIVs that may pose a risk to poultry and humans, regular surveillance studies must be performed. Here, we report the surveillance of circulating AIVs in South Korea during the winter seasons of 2009-2013. A total of 126 AIVs were isolated from 7942 fecal samples from wild migratory birds, with a total isolation rate of 1.59%. H1‒H7 and H9‒H11 hemagglutinin (HA) subtypes, and N1‒N3, N5, and N7‒N9 neuraminidase (NA) subtypes were successfully isolated, with H6 and N2 as the most predominant HA and NA subtypes, respectively. Sequence identity search showed that the HA and NA genes of the isolates were highly similar to those of low-pathogenicity influenza strains from the East Asian-Australasian flyway. No match was found for the HA genes of high-pathogenicity influenza strains. Thus, the AIV strains circulating in wild migratory birds from 2009 to 2013 in South Korea likely had low pathogenicity. Continuous surveillance studies such as this one must be performed to identify potential precursors of influenza viruses that may threaten animal and human health.


Asunto(s)
Aves/virología , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Animales , República de Corea/epidemiología
8.
Front Immunol ; 12: 738070, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777348

RESUMEN

Mycobacterium abscessus (MAB) is one of the rapidly growing, multidrug-resistant non-tuberculous mycobacteria (NTM) causing various diseases including pulmonary disorder. Although it has been known that type I interferons (IFNs) contribute to host defense against bacterial infections, the role of type I IFNs against MAB infection is still unclear. In the present study, we show that rIFN-ß treatment reduced the intracellular growth of MAB in macrophages. Deficiency of IFN-α/ß receptor (IFNAR) led to the reduction of nitric oxide (NO) production in MAB-infected macrophages. Consistently, rIFN-ß treatment enhanced the expression of iNOS gene and protein, and NO production in response to MAB. We also found that NO is essential for the intracellular growth control of MAB within macrophages in an inhibitor assay using iNOS-deficient cells. In addition, pretreatment of rIFN-ß before MAB infection in mice increased production of NO in the lungs at day 1 after infection and promoted the bacterial clearance at day 5. However, when alveolar macrophages were depleted by treatment of clodronate liposome, rIFN-ß did not promote the bacterial clearance in the lungs. Moreover, we found that a cytosolic receptor nucleotide-binding oligomerization domain 2 (NOD2) is required for MAB-induced TANK binding kinase 1 (TBK1) phosphorylation and IFN-ß gene expression in macrophages. Finally, increase in the bacterial loads caused by reduction of NO levels was reversed by rIFN-ß treatment in the lungs of NOD2-deficient mice. Collectively, our findings suggest that type I IFNs act as an intermediator of NOD2-induced NO production in macrophages and thus contribute to host defense against MAB infection.


Asunto(s)
Interferón Tipo I/metabolismo , Pulmón/microbiología , Macrófagos Alveolares/microbiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/crecimiento & desarrollo , Óxido Nítrico/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Interacciones Huésped-Patógeno , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Mycobacterium abscessus/inmunología , Mycobacterium abscessus/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal
9.
Phytomedicine ; 91: 153668, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34385093

RESUMEN

BACKGROUND: Aloe vera is a functional food with various pharmacological functions, including an immune-modulating effect. Until now, A. vera has never been studied as an adjuvant in influenza vaccine, and its effects on upper respiratory tract infection (URI) are unknown. PURPOSE: The objective of our study was to investigate the effect of processed A. vera gel (PAG) on immunogenicity of quadrivalent inactivated influenza vaccine and URI in healthy adults. STUDY DESIGN: A randomized, double-blind, placebo-controlled clinical trial was performed. METHODS: This study was conducted in 100 healthy adults at a single center from September 2017 to May 2018. Subjects were randomly divided into a PAG group (n = 50) and a placebo group (n = 50). The enrolled subjects were instructed to ingest the study drug for 8 weeks. The participants received a single dose of quadrivalent inactivated influenza vaccine after taking the study drug for the first 4 weeks of the study. The primary endpoint was seroprotection rate against at least one viral strain at 4 weeks post-vaccination. Other outcomes were seroprotection rate at 24 weeks post-vaccination, seroconversion rate, geometric mean fold increase (GMFI) at 4 and 24 weeks post-vaccination, seroprotection rate ratio and geometric mean titer ratio (GMTR) at 4 weeks post-vaccination between PAG and placebo groups, and incidence, severity, and duration of URI. RESULTS: The European Committee for proprietary medicinal products (CPMP) evaluation criteria were met at least one in the PAG and placebo groups for all strains. However, there was no significant difference in the seroprotection rate at 4 weeks post-vaccination against all strains in both PAG and placebo groups. Among secondary endpoints, the GMFI at 4 weeks post-vaccination for the A/H3N2 was significantly higher in the PAG than in placebo group. The GMTR as adjuvant effect was 1.382 (95% CI, 1.014-1.1883). Kaplan-Meier curve analysis showed a reduction in incidence of URI (p = 0.035), and a generalized estimating equation model identified a decrease in repeated URI events (odds ratio 0.57; 95% CI, 0.39-0.83; p = 0.003) in the PAG group. CONCLUSIONS: Oral intake of PAG did not show a significant increase in seroprotection rate from an immunogenicity perspective. However, it reduced the number of URI episodes. A well-designed further study is needed on the effect of PAG's antibody response against A/H3N2 in the future.


Asunto(s)
Adyuvantes Inmunológicos , Inmunogenicidad Vacunal , Vacunas contra la Influenza , Gripe Humana , Preparaciones de Plantas/química , Adulto , Método Doble Ciego , Pruebas de Inhibición de Hemaglutinación , Humanos , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control
10.
Sci Rep ; 11(1): 9427, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941825

RESUMEN

Influenza viruses cause significant morbidity and mortality worldwide. Long-term or frequent use of approved anti-influenza agents has resulted in drug-resistant strains, thereby necessitating the discovery of new drugs. In this study, we found aprotinin, a serine protease inhibitor, as an anti-influenza candidate through screening of compound libraries. Aprotinin has been previously reported to show inhibitory effects on a few influenza A virus (IAV) subtypes (e.g., seasonal H1N1 and H3N2). However, because there were no reports of its inhibitory effects on the other types of influenza viruses, we investigated the inhibitory effects of aprotinin in vitro on a wide range of influenza viruses, including avian and oseltamivir-resistant influenza virus strains. Our cell-based assay showed that aprotinin had inhibitory effects on seasonal human IAVs (H1N1 and H3N2 subtypes), avian IAVs (H5N2, H6N5, and H9N2 subtypes), an oseltamivir-resistant IAV, and a currently circulating influenza B virus. We have also confirmed its activity in mice infected with a lethal dose of influenza virus, showing a significant increase in survival rate. Our findings suggest that aprotinin has the capacity to inhibit a wide range of influenza virus subtypes and should be considered for development as a therapeutic agent against influenza.


Asunto(s)
Antivirales/farmacología , Aprotinina/farmacología , Evaluación Preclínica de Medicamentos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Inhibidores de Serina Proteinasa/farmacología , Animales , Línea Celular , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H5N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H9N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H9N2 del Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/crecimiento & desarrollo , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL
11.
Am J Reprod Immunol ; 86(1): e13403, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33580557

RESUMEN

PROBLEM: Chorioamnionitis is caused by a bacterial infection that ascends from the vagina and can cause adverse pregnancy outcomes (APOs). Fusobacterium nucleatum (F. nucleatum) is a periodontal pathogen associated with the occurrence of APOs. In this study, we evaluated whether receptor-interacting protein kinase 2 (Ripk2), an adaptor protein of the cytosolic receptors nucleotide-binding oligomerization domain (NOD)1 and NOD2, in macrophages and human decidual stromal cells (hDSCs) contributes to immune responses against F. nucleatum. METHOD OF STUDY: Bone marrow-derived macrophages (BMDMs) isolated from wild-type (WT) and Ripk2-deficient mice and hDSCs were cultured with F. nucleatum (MOI 1, 10, 100). BMDMs and hDSCs were assessed using enzyme-linked immunosorbent assay, Western blot analysis, real-time PCR, and nitrite assay. RESULTS: Fusobacterium nucleatum-induced production of IL-6, but not of TNF-α and IL-10, was lower in Ripk2-deficient BMDMs than in WT cells. Western blotting revealed a decrease in F. nucleatum-induced p65 phosphorylation in Ripk2-deficient macrophages, whereas mitogen-activated protein kinases activation was comparable between WT and Ripk2-deficient cells. The production of nitric oxide (NO) in response to F. nucleatum and the gene and protein expression of inducible NO synthase was impaired in Ripk2-deficient BMDMs. In hDSCs, F. nucleatum upregulated the gene and protein expression of NOD1, NOD2, and Ripk2 in a time-dependent manner. F. nucleatum also increased the production of IL-6, CXCL8, and CCL2, whereas this production was decreased by the Ripk2 inhibitors SB203580 and PP2. CONCLUSIONS: In conclusion, Ripk2 signaling appears to contribute to the F. nucleatum-induced immune response and can be a preventive and therapeutic target against APOs.


Asunto(s)
Decidua/patología , Infecciones por Fusobacterium/inmunología , Fusobacterium nucleatum/fisiología , Macrófagos/inmunología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Células del Estroma/inmunología , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Femenino , Interacciones Huésped-Patógeno , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Receptor Toll-Like 4/genética
12.
Immune Netw ; 20(4): e31, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32895618

RESUMEN

The effectiveness of current influenza vaccines is considered suboptimal, and 1 way to improve the vaccines is using adjuvants. However, the current pool of adjuvants used in influenza vaccination is limited due to safety concerns. Aloe vera, or aloe, has been shown to have immunomodulatory functions and to be safe for oral intake. In this study, we explored the potential of orally administered processed Aloe vera gel (PAG) as an adjuvant for influenza vaccines in C57BL/6 mice. We first evaluated its adjuvanticity with a split-type pandemic H1N1 (pH1N1) Ag by subjecting the mice to lethal homologous influenza challenge. Oral PAG administration with the pH1N1 Ag increased survival rates in mice to levels similar to those of alum and MF59, which are currently used as adjuvants in influenza vaccine formulations. Similarly, oral PAG administration improved the survival of mice immunized with a commercial trivalent influenza vaccine against lethal homologous and heterologous virus challenge. PAG also increased hemagglutination inhibition and virus neutralization Ab titers against homologous and heterologous influenza strains following immunization with the split-type pH1N1 Ag or the commercial trivalent vaccine. Therefore, this study demonstrates that PAG may potentially be used as an adjuvant for influenza vaccines.

13.
Immune Netw ; 20(3): e25, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32655973

RESUMEN

Acinetobacter baumannii is known for its multidrug antibiotic resistance. New approaches to treating drug-resistant bacterial infections are urgently required. Cathelicidin-related antimicrobial peptide (CRAMP) is a murine antimicrobial peptide that exerts diverse immune functions, including both direct bacterial cell killing and immunomodulatory effects. In this study, we sought to identify the role of CRAMP in the host immune response to multidrug-resistant Acinetobacter baumannii. Wild-type (WT) and CRAMP knockout mice were infected intranasally with the bacteria. CRAMP-/- mice exhibited increased bacterial colony-forming units (CFUs) in bronchoalveolar lavage (BAL) fluid after A. baumannii infection compared to WT mice. The loss of CRAMP expression resulted in a significant decrease in the recruitment of immune cells, primarily neutrophils. The levels of IL-6 and CXCL1 were lower, whereas the levels of IL-10 were significantly higher in the BAL fluid of CRAMP-/- mice compared to WT mice 1 day after infection. In an in vitro assay using thioglycollate-induced peritoneal neutrophils, the ability of bacterial phagocytosis and killing was impaired in CRAMP-/- neutrophils compared to the WT cells. CRAMP was also essential for the production of cytokines and chemokines in response to A. baumannii in neutrophils. In addition, the A. baumannii-induced inhibitor of κB-α degradation and phosphorylation of p38 MAPK were impaired in CRAMP-/- neutrophils, whereas ERK and JNK phosphorylation was upregulated. Our results indicate that CRAMP plays an important role in the host defense against pulmonary infection with A. baumannii by promoting the antibacterial activity of neutrophils and regulating the innate immune responses.

14.
Sci Rep ; 9(1): 11461, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391514

RESUMEN

Zika virus (ZIKV) is a mosquito-borne member of the Flaviviridae family. ZIKV infection has been associated with neurological complications such as microcephaly in newborns and Guillain-Barré syndrome in adults; thus, therapeutic agents are urgently needed. Statins are clinically approved for lowering cholesterol levels to prevent cardiovascular disease but have shown potential as antiviral drugs. In this study, we explored the possibility of utilizing statins as anti-ZIKV drugs. We found that, generally, lipophilic statins (atorvastatin, cerivastatin, fluvastatin, lovastatin, mevastatin, and simvastatin) could reduce ZIKV production in vitro and result in smaller foci of infection. Time-of-drug-addition assay revealed that early treatment with statins is more beneficial than late treatment; however, statins could not completely inhibit the entry stage of ZIKV infection. Furthermore, individual lipophilic statins differed in anti-ZIKV capacity, with fluvastatin being the most efficient at low concentrations. Taken together, this study shows that statins or their derivatives have the potential to be used as anti-ZIKV therapeutic agents.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Replicación Viral/efectos de los fármacos , Infección por el Virus Zika/tratamiento farmacológico , Virus Zika/efectos de los fármacos , Animales , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Fluvastatina/química , Fluvastatina/farmacología , Fluvastatina/uso terapéutico , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Tiempo de Tratamiento , Células Vero , Virus Zika/fisiología , Infección por el Virus Zika/virología
15.
J Gen Virol ; 98(12): 2950-2954, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29168676

RESUMEN

Influenza B virus remains a major cause of respiratory diseases worldwide. Because of limited epidemiological and genetic data, the local and global transmission patterns of influenza B virus are not fully understood. Here we report the molecular and phylogenetic characterization of 163 influenza B virus isolates from pediatric inpatients with influenza-like illness in the winter of 2011-2012 in South Korea. Analysis of haemagglutinin and neuraminidase genes of the influenza B isolates revealed that both B/Victoria (62 %) and B/Yamagata lineages (38 %) co-circulated during that influenza season, and a considerable number of the isolates carried several amino acid substitutions in the four major antigenic epitopes of their haemagglutinin protein.


Asunto(s)
Antígenos Virales/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza B/genética , Gripe Humana/epidemiología , Neuraminidasa/genética , Filogenia , Sustitución de Aminoácidos , Niño , Expresión Génica , Humanos , Virus de la Influenza B/clasificación , Virus de la Influenza B/inmunología , Gripe Humana/transmisión , Gripe Humana/virología , Pacientes Internos , República de Corea/epidemiología , Estaciones del Año
16.
Arch Virol ; 162(10): 3017-3024, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28664296

RESUMEN

Influenza A viruses must undergo adaptation to acquire virulence in new host species. In mouse models, host adaptation for virulence is generally performed through 5 to 20 lung-to-lung passages. However, highly pathogenic avian influenza viruses (e.g., H5N1 and H7N7 subtypes) have been observed to acquire virulence in mice after only a few in vivo passages. In this study, a low-pathogenic avian influenza H5N2 virus, A/Aquatic Bird/Korea/CN2/2009, which was a prevalent subtype in South Korea in 2009, was serially passaged in mice to evaluate its potential to become highly pathogenic. Unexpectedly, the virus became highly pathogenic in mice after a single lung-to-lung passage, resulting in 100% lethality with a mean death time (MDT) of 6.1 days postinfection (DPI). Moreover, the pathogenicity gradually increased after subsequent in vivo passages with an MDT of 5.2 and 4.2 DPI after the second and third passage, respectively. Our molecular analysis revealed that two amino acid changes in the polymerase complex (a glutamate-to-lysine substitution at position 627 of PB2 and a threonine-to-isoleucine substitution at position 97 of PA) were associated with the increased pathogenicity; the PB2 E627K mutation was responsible for the initial virulence conversion (0 to 100% lethality), while the PA T97I mutation acted as an accessory for the increased virulence.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , Adaptación Fisiológica , Animales , Subtipo H5N2 del Virus de la Influenza A/genética , Ratones , Filogenia , Virulencia/genética
17.
Vaccine ; 35(30): 3741-3748, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28576571

RESUMEN

In this study, we developed a further-modified outer membrane vesicle (fmOMV) from the ΔmsbB/ΔpagP mutant of Escherichia coli transformed with the plasmid, pLpxF, in order to use it as an adjuvant for pandemic H1N1 (pH1N1) influenza vaccine. We evaluated the efficacy of the pH1N1 influenza vaccine containing the fmOMV in animal models as compared to the commercial adjuvants, alum or AddaVaxTM. The fmOMV-adjuvanted pH1N1 influenza vaccine induced a significant increase in the humoral immunity; however, this effect was less than that of the AddaVaxTM. The fmOMV-adjuvanted vaccine displayed pronounced an enhanced protective efficacy with increased T cell immune response and reduced the viral load in the lungs of the infected mice after challenging them with a lethal dose of the homologous virus. Moreover, it resulted in a significantly higher cross-protection against heterologous virus challenge than that of the pH1N1 vaccine with alum or with no adjuvants. In ferrets, the fmOMV-adjuvanted vaccine elicited a superior antibody response based on the HI titer and efficiently protected the animals from the lethal viral challenges. Taken together, the nontoxic fmOMV could be a promising adjuvant for inducing robust T cell priming into the pH1N1 vaccine and might be broadly applicable to the development of preventive measures against influenza virus infection.


Asunto(s)
Adyuvantes Inmunológicos , Proteínas de la Membrana Bacteriana Externa/inmunología , Inmunogenicidad Vacunal , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Animales , Anticuerpos Antivirales/biosíntesis , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Proteínas de la Membrana Bacteriana Externa/toxicidad , Protección Cruzada , Escherichia coli/genética , Escherichia coli/inmunología , Hurones , Inmunidad Humoral , Vacunas contra la Influenza/administración & dosificación , Pulmón/inmunología , Pulmón/virología , Ratones , Infecciones por Orthomyxoviridae/prevención & control , Células TH1/inmunología , Carga Viral
18.
J Microbiol Biotechnol ; 26(6): 1109-14, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27012241

RESUMEN

H3N2 canine influenza virus emerged in South Korea in 2007 and subsequently spread to China and Thailand, causing epidemic or endemic respiratory diseases in dogs. Through intermammalian species transmission, the virus has also infected cats. However, no direct evidence of significant genetic evolution has been reported since its first emergence. Here, we describe in depth the genetic and molecular characteristics of the ancestral strain (i.e., the first virus isolate from South Korea) of the H3N2 canine influenza virus currently circulating in East Asia.


Asunto(s)
Evolución Molecular , Subtipo H3N2 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Animales , Gatos/virología , China/epidemiología , Enfermedades de los Perros/virología , Perros/virología , Genotipo , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Filogenia , República de Corea/epidemiología , Análisis de Secuencia de ADN , Tailandia/epidemiología
19.
Virol J ; 12: 134, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26336880

RESUMEN

BACKGROUND: Since avian-origin H3N2 canine influenza virus (CIV) was first identified in South Korea in 2008, the novel influenza virus has been reported in several countries in Asia. Reverse zoonotic transmission of pandemic H1N1 (2009) influenza virus (pH1N1) has been observed in a broad range of animal species. Viral dominance and characterization of the reassortants of both viruses was undertaken in the present study. FINDINGS: Here we describe the viral dominance of 23 CIV reassortants between pH1N1 and canine H3N2 influenza viruses from a naturally co-infected dog. These results indicate that the M gene of pandemic H1N1 and the HA gene of canine H3N2 are predominant in the reassortants. Furthermore, unlike the original canine H3N2 virus, some reassortants showed high pathogenicity in mice. CONCLUSIONS: This study suggests that continuous monitoring of influenza infection in companion animals may be necessary to investigate the potential of the emergence of novel influenza viruses.


Asunto(s)
Coinfección/veterinaria , Enfermedades de los Perros/virología , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Virus Reordenados/aislamiento & purificación , Animales , Coinfección/virología , Modelos Animales de Enfermedad , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , República de Corea , Proteínas de la Matriz Viral/genética , Virulencia
20.
Life Sci ; 135: 138-46, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26141997

RESUMEN

AIMS: As an alternative strategy to obtain large amounts of ginseng extract with high yield of ginsenosides, we have utilized culture of cambial meristematic cells (CMCs) from wild ginseng. The anti-tumor effects of methanol extract of ginseng CMCs (MEGC) and their action mechanisms were investigated. MAIN METHODS: Mice were intraperitoneally administered with MEGC, and we explored NK cell activity, suppression of in vivo growth of tumor cells and relevant molecule expression. KEY FINDINGS: MEGC significantly potentiated NK cell activity and suppressed in vivo growth of B16 melanoma cells. However, we observed no increase in NK cell number and unaltered expression of NK cell-activating (NKG2D) and inhibitory (Ly49, CD94/NKG2A) receptors as well as NK cell activation markers (CD25, CD69, CD119, and CD212) in MEGC-treated group compared to the controls. Instead, MEGC significantly enhanced IL-2 responsiveness in the early effector phase and the constitutive expression of granzyme B. SIGNIFICANCE: Our data indicate that culture of CMCs is an attractive alternative method for sustainable production of ginseng extracts and clinical use. In addition, we have unraveled a novel mechanism underlying the potentiation of NK cell activity and antitumor effect of ginseng extract, in which it upregulates the constitutive expression of cytotoxic mediator(s) and IL-2 responsiveness.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Cámbium/química , Células Asesinas Naturales/inmunología , Neoplasias Experimentales/tratamiento farmacológico , Panax/química , Células Vegetales/química , Extractos Vegetales/farmacología , Adyuvantes Inmunológicos/química , Animales , Antígenos de Diferenciación/inmunología , Antineoplásicos Fitogénicos/química , Inmunidad Celular/efectos de los fármacos , Células Asesinas Naturales/patología , Masculino , Metanol/química , Ratones , Neoplasias Experimentales/inmunología , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...